PHYSIQUE II

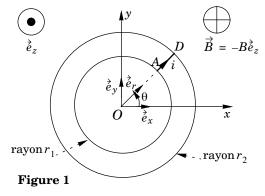
On se propose d'examiner quelques principes de fonctionnement de deux types de moteurs électriques, à la fois sous les aspects électromagnétique et dynamique. Les trois parties de ce problème sont indépendantes. L'étude est réalisée dans un référentiel galiléen \mathscr{R} auquel on associe un repère Oxyz (de vecteurs unitaires respectifs e_x, e_y, e_z).

Partie I - Moteur à aimant inducteur

Un segment conducteur filiforme rectiligne AD, de résistance négligeable, parcouru par un courant i (dirigé de A vers D), est astreint à tourner autour de l'axe Oz à la vitesse angulaire constante ω , dans un champ magnétique uniforme et indépendant du temps : $\overrightarrow{B} = -B\overrightarrow{e_z}(B>0)$. Les points O,A, et D sont toujours alignés et on appelle $\overrightarrow{e_r}$ le vecteur

unitaire radial dirigé selon OA: on

pose $\theta = (e_x, e_r)$ et donc $\omega = d\theta/dt$.



Les deux extrémités A et D du segment glissent sur deux conducteurs circulaires fixes, de centre O, de rayons respectifs r_1 et r_2 $(r_1 < r_2)$, de résistance négligeable, qui permettent de collecter le courant i (figure 1).

- **I.A -** Calculer la f.e.m. e_{AD} induite qui apparaît aux extrémités du segment AD en fonction de B , r_1 , r_2 et ω .
- **I.B** Calculer le moment en O de la force de Laplace, soit $\overrightarrow{\Gamma_1} = \overrightarrow{\Gamma_1 e_z}$, qui s'exerce sur AD en fonction de B, r_1 , r_2 et i.
- I.C À présent, on considère une nappe conductrice formée de N segments conducteurs identiques à AD, placés dans le plan Oxy et régulièrement

Filière TSI

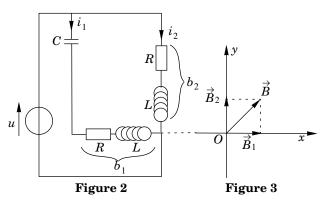
distribués autour de l'axe Oz. Le système rigide ainsi constitué tourne autour de l'axe Oz avec la vitesse angulaire uniforme $\omega = d\theta/dt$.

- I.C.1) Quelle est l'expression de la f.e.m $e_{1\rightarrow 2}$ qui apparaît entre les deux conducteurs circulaires ?
- I.C.2) Chaque segment conducteur étant parcouru par un courant électrique $i_N = I/N$, donner l'expression du moment total en O des forces de Laplace, $\Gamma = \Gamma e_z$ qui s'exerce sur la nappe par rapport à l'axe Oz.
- **I.D -** On branche entre les deux conducteurs circulaires, un générateur de f.e.m. U_0 constante et de résistance interne R, la borne positive étant reliée au conducteur circulaire intérieur.
- I.D.1) Donner l'expression du courant total I débité par le générateur et qui traverse le moteur (on néglige l'inductance propre du circuit).
- I.D.2) Montrer que le moment Γ peut s'écrire sous la forme suivante $\Gamma = M_1 U_0 M_2 \omega$ et exprimer M_1 et M_2 en fonction de B, R, r_1 et r_2 .
- I.D.3) Application numérique :

On donne $U_0=45~\mathrm{V}$, $R=1,2\Omega$, B=1T, $r_1=1~\mathrm{cm}$, $r_2=4~\mathrm{cm}$, $\omega=4\pi~\mathrm{rad}\cdot\mathrm{s}^{-1}$. Calculer Γ .

Partie II - Moteur asynchrone à courant alternatif

II.A - On considère le circuit électrique de la figure 2 qui comporte un générateur idéal de tension sinusoïdale $u(t) = U_0 \cos(\omega t + \varphi_0)$, ou encore : $u(t) = U_{eff} \sqrt{2} \cos(\omega t + \varphi_0)$ un condensateur de capacité C et deux bobines identiques (b_1) et (b_2) , d'inductance propre L et de résistance



R (on néglige l'inductance mutuelle entre les deux bobines).

Les bobines (b_1) et (b_2) sont disposées de manière à ce que leurs axes soient perpendiculaires en $O:(b_1)$ crée ainsi en O un champ magnétique colinéaire à l'axe Ox, soit $\overrightarrow{B_1}=B_1\overrightarrow{e_x}$, et (b_2) un champ colinéaire à l'axe Oy, soit $\overrightarrow{B_2}=B_2\overrightarrow{e_y}$ (figure 3). Les mesures algébriques B_1 et B_2 des champs sont proportionnelles aux intensités qui traversent chaque bobine : $B_1(t)=ki_1(t)$ et $B_2(t)=ki_2(t)$ (k constante positive donnée).

II.A.1) Déterminer les intensités $i_1(t)$ et $i_2(t)$ et les mettre sous la forme : $i_1(t) = I_{01}\cos(\omega t + \varphi_0 - \varphi_1)$ et $i_2(t) = I_{02}\cos(\omega t + \varphi_0 - \varphi_2)$. Exprimer I_{01} , I_{02} , φ_1 et φ_2 en fonction de R, L, C et ω (on suppose φ_1 , $\varphi_2 \in [-\pi/2, \pi/2]$).

II.A.2) Quelle doit être la relation entre L, C et ω pour que les amplitudes I_{01} et I_{02} des courants soient égales ? Quelle relation lie alors les déphasages φ_1 et φ_2 ? Quel est le signe de φ_1 ? Quel est celui de φ_2 ?

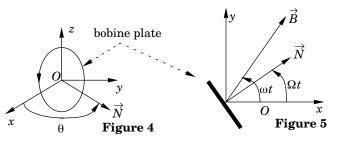
II.A.3) Quelle doit être la relation entre R, L et ω si l'on souhaite en outre que $\varphi_2 - \varphi_1 = \pi/2$?

II.A.4) Les deux conditions précédentes étant réunies, montrer que par un choix judicieux de φ_0 que l'on précisera, B_1 et B_2 peuvent se mettre sous la forme $B_1 = B_0 \cos(\omega t)$ et $B_2 = B_0 \sin(\omega t)$. Exprimer B_0 en fonction de k, U_0 et R. Préciser les caractéristiques du champ total $\overrightarrow{B} = \overrightarrow{B_1} + \overrightarrow{B_2}$ créé par les deux bobines en O.

II.A.5) Application numérique :

On donne $k=10^{-3} \mathrm{T\cdot A}^{-1}$, $L=100~\mathrm{mH}$, $\omega=100\pi~\mathrm{rad\cdot s}^{-1}$, $U_{eff}=220~\mathrm{V}$. Calculer B_0 .

II.B - Le champ magnétique \overrightarrow{B} ci-dessus agit sur une petite bobine plate, de n spires de section S, fermée sur elle même, d'inductance propre L_1 et de résistance R_1 (on suppose que le champ \overrightarrow{B}



est uniforme sur toute la bobine). Le centre de la bobine coïncide avec le point O et la bobine tourne autour de l'axe Oz à la vitesse Ω que l'on suppose constante : le vecteur unitaire \overrightarrow{N} normal au plan de la bobine en O reste

constamment dans le plan Oxy; l'angle $\theta = (\overrightarrow{e_x}, \overrightarrow{N})$ s'écrit donc $\theta = \Omega t$ en supposant $\theta = 0$ à l'instant initial (figures 4 et 5).

- II.B.1) Déterminer la f.e.m. induite par le champ \overrightarrow{B} dans la petite bobine et en déduire que cette bobine est parcourue par un courant i de la forme : $i(t) = I_0 \sin((\omega \Omega)t \psi)$. Exprimer I_0 et ψ en fonction de la constante $\Phi_0 = nSB_0$ et de R_1 , L_1 , ω , Ω .
- II.B.2) Exprimer le moment $\vec{\Gamma} = \Gamma \overrightarrow{e_z}$ du couple électromagnétique subi par la petite bobine en fonction de Φ_0 , R_1 , L_1 , ω , Ω et t.
- II.B.3) Calculer la valeur moyenne Γ_m de Γ en fonction de Φ_0 , R_1 , L_1 , ω , Ω ; tracer le graphe de Γ_m en fonction de Ω pour $\Omega \in [0, \omega]$ (on suppose $R_1 < L_1 \omega$). Pourquoi restreint-on l'étude à l'intervalle $[0, \omega]$?
- II.B.4) Application numérique :

On donne $\Phi_0 = 10^{-3} \, \mathrm{T \cdot m}^2$, $L_1 = 100 \, \mathrm{mH}$, $R_1 = 1\Omega$, $\omega = 100 \pi \, \mathrm{rad \cdot s}^{-1}$. Calculer la valeur maximale $\Gamma_{m \ Max}$ de Γ_m et la vitesse angulaire correspon-

Calculer la valeur maximale $\Gamma_{m, Max}$ de Γ_m et la vitesse angulaire correspondante de la petite bobine.

II.B.5) Pour quelles valeurs de Ω le moteur a-t-il un fonctionnement stable ? Justifiez brièvement votre réponse.

Partie III - Étude dynamique

On considère un moteur à aimant inducteur du type de celui étudié en Partie I ; alimenté par une tension u, il exerce un couple moteur $\Gamma = \Gamma e_z$. L'ensemble des parties mobiles (rotor, arbre, pièces diverses) de ce moteur possède un moment d'inertie J par rapport à l'axe de rotation Oz.

Dans toute cette partie on suppose $\omega > 0$.

- **III.A** Le moteur tourne à vide à la vitesse ω ; Γ s'écrit $\Gamma = M_1 u M_2 \omega$ (M_1 et M_2 étant deux constantes positives données).
- III.A.1) En supposant que les parties mobiles ne soient soumises qu'au couple moteur, écrire l'équation du mouvement.
- III.A.2) Quelle est l'expression de la vitesse ω_0 en régime permanent lorsque $u=U_0=$ constante ?
- III.A.3) On suppose $u=U_0$ et le régime permanent est établi. À un instant que l'on choisit comme instant initial, t=0, la tension u passe de la valeur U_0 à la valeur constante U_1 $(U_1>U_0)$.

Donner, pour t>0 , l'expression de la vitesse ω en fonction du temps.

On pourra poser $\tau=J/N$. Quelle est la dimension de la constante τ ? Justifier votre réponse.

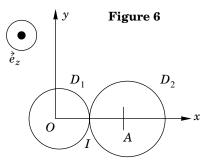
III.B - On associe au moteur un dispositif électromécanique qui permet d'avoir $\Gamma = \Gamma_0$ (Γ_0 constante positive) lorsque le moteur est alimenté et $\Gamma = 0$ lorsque le moteur ne l'est pas.

III.B.1) La partie mobile du moteur est soumise, en outre, à l'action d'un couple résistant de moment $\overrightarrow{\Gamma_R} = \Gamma_R e_z$ tel que $\Gamma_R = -\Gamma_{R0}$ (Γ_{R0} constante positive) lorsque le moteur tourne et $|\Gamma_R| \leq \Gamma_{R0}$ lorsque le moteur est immobile. Ce couple résistant ne peut évidement pas entraı̂ner la rotation du moteur et ne peut que ralentir celle-ci lorsque le moteur tourne.

- a) Le moteur est à l'arrêt. À l'instant que l'on choisit comme instant initial, t = 0, on alimente le moteur. À quelle condition le moteur peut-il démarrer?
- b) La condition précédente étant réalisée, déterminer la vitesse ω du moteur en fonction de Γ_0 , Γ_{R0} , J et du temps t.
- c) On coupe l'alimentation du moteur à l'instant t_0 . Soit t_1 l'instant auquel le moteur s'arrête. Exprimer t_1 en fonction de t_0 , Γ_0 et Γ_{R0} .
- d) Application numérique :

On donne
$$\Gamma_0 = 4 \cdot 10^{-3} \text{ N} \cdot \text{m}$$
, $\Gamma_{R0} = 10^{-3} \text{ N} \cdot \text{m}$, $t_0 = 1 \text{ s}$. Calculer t_1 .

III.B.2) On associe au moteur un ensemble d'engrenages. Sur l'arbre du moteur est fixée une roue dentée D_1 d'axe Oz et de rayon R_1 ; le moment d'inertie de l'ensemble des parties mobiles (rotor, arbre, D_1 , pièces diverses) par rapport à l'axe Oz est J_1 . La roue dentée D_1 entraı̂ne à son tour, sans glissement, une roue dentée D_2 d'axe Az (colinéaire à Oz), de rayon R_2 et de moment d'inertie J_2 par rapport à Az (figure 6): le seul mouvement de D_2 est une rotation autour de l'axe Az.



L'ensemble étant immobile, on alimente le moteur à partir d'un instant pris pour instant initial t=0. La partie mobile du moteur et la roue D_1 sont alors soumises au couple moteur $\Gamma=\Gamma_0 e_z$ (Γ_0 constante positive) et celui-ci est suffisamment intense pour que le moteur puisse démarrer. Partie mobile du moteur et roue D_1 sont également soumises à l'action de la roue D_2 : celle-ci peut être représentée par une force $\overrightarrow{F_1}=F_N e_x - F_T e_y$ s'appliquant au point de contact I entre les deux roues $F_1 = F_R e_z$ ($F_R = F_R e_z$). La roue $F_R = F_R e_z$ ($F_R = F_R e_z$) constante positive) et évidemment à la force $F_2 = -F_1$.

a) Exprimer la vitesse de rotation ω_2 de la roue D_2 autour de son axe en fonction de celle ω du moteur et des rayons R_1 et R_2 . Justifier le signe de Γ_{R0} .

b) Appliquer le théorème du moment cinétique en projection sur les axes de rotation respectifs à l'ensemble (partie mobile du moteur + roue D_1) puis à la roue D_2 . On admettra qu'aucune autre action mécanique que celles précisées ci-dessus n'interviennent dans l'application de ce théorème.

- c) En déduire les vitesses angulaires ω et ω_2 en fonction de Γ_0 , Γ_{R0} , J_1 , J_2 , R_1 , R_2 et du temps t.
- d) Exprimer la norme F_T de la composante tangentielle de la force de contact entre les roues D_1 et D_2 en fonction de Γ_0 , Γ_{R0} , J_1 , J_2 , R_1 , R_2 .
- e) Application numérique.

On donne:

$$\Gamma_0 = 4 \cdot 10^{-3} \,\mathrm{N \cdot m} \,, \, J_1 = 8 \cdot 10^{-4} \,\mathrm{kg \, m}^2 \,, \, R_1 = 10^{-2} \,\mathrm{m} \,, \, \Gamma_{R0} = 10^{-3} \,\mathrm{N \cdot m} \,,$$

$$J_2 = 4 \cdot 10^{-4} \,\mathrm{kg \, m}^2 \,, \, R_2 = 2 \cdot 10^{-2} \,\mathrm{m} \,.$$

Calculer F_T et les vitesses ω et ω_2 atteintes respectivement par D_1 et D_2 au bout de t=1 s.

