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Réglage d’un pilote automatique pour un avion léger biplace

Figure 1 – L’Elixir en vol © Elixir Aircraft

Contexte
L’entreprise française Elixir Aircraft commercialise un petit avion léger biplace, l’Elixir, destiné entre autres à la
formation des pilotes (figure 1).
Cet avion est conçu selon une structure en OneShot, technique consistant à concevoir et fabriquer les éléments com-
plexes (aile et fuselage) en une seule pièce en exploitant les avantages des matériaux composites, supprimant par la
même occasion les difficultés causées par les assemblages. Les bénéfices sont nombreux : moins de pièces et moins
d’assemblages se traduisent par un nombre de défaillances plus faible, la diminution de la maintenance et donc un coût
réduit. Parallèlement, la sécurité est renforcée par la simplicité de la structure et les performances sont améliorées par
la masse réduite. L’Elixir est ainsi 50 % plus économe en carburant que la grande majorité des avions équivalents.

Un pilote automatique est un système permettant d’assurer un nombre important de fonctions, sans l’intervention du
pilote, comme la stabilisation de l’avion, le suivi d’une trajectoire, le maintien à une altitude fixée ou même l’atterris-
sage. De nombreux avions sont équipés de tels types de systèmes.

L’Elixir est équipé d’un pilote automatique deux axes, permettant le contrôle du roulis et du tangage, respectivement
via les ailerons et la gouverne de profondeur. Les différents constituants de l’avion sont présentés dans l’annexe A.

Objectif

Étudier la structure partielle de commande du pilote automatique et concevoir les lois de commande associées en vue
de permettre la stabilisation en vol de croisière de façon à maintenir une altitude et une vitesse constantes.

Constitution du système de pilotage automatique
L’implantation du pilote automatique fait appel en particulier à deux servomoteurs GSA 28 Smart Autopilot Servo
agissant par le biais d’un système de transmission (par tringlerie) sur les ailerons d’une part, sur la gouverne de
profondeur d’autre part. Les servomoteurs sont commandés par l’intermédiaire d’une unité GARMIN G3X Touch 10"
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GDU460. Les commandes sont élaborées d’un point de vue plus général à partir des mesures de l’altitude, de l’orien-
tation de l’avion et de la vitesse obtenues par un ensemble de capteurs. Les grandeurs acquises sont transmises à une
unité ADAHRS (Air Data Attitude Heading Reference System) dont la fonction est de rendre les données exploitables
par l’unité de traitement GARMIN GDU460.

Pour cette étude, restreinte au pilotage des seules vitesses horizontale et verticale, la structure du pilote automatique
est représentée sur la figure 2 selon une architecture de régulation dite monovariable :

– la vitesse horizontale Vx est pilotée par la force de propulsion Fm du moteur thermique et de son hélice. Celle-ci
est déterminée par un correcteur opérant à partir de l’écart de vitesse horizontale εx ;

– la vitesse verticale Vz est pilotée par l’angle β de la gouverne de profondeur, actionné par l’un des deux servo-
moteurs, à partir de l’écart de vitesse verticale εz.
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Figure 2 – Structure restreinte du pilote automatique

Cette structure de régulation est dite monovariable car elle ne fait pas intervenir de terme de couplage de la vitesse
verticale Vz dans le calcul de la force de propulsion Fm ni de la vitesse horizontale Vx dans le calcul de l’angle de
gouverne β. En pratique, les grandeurs de commande issues des correcteurs sont les consignes F ∗

m et β∗, respectivement
de la force de propulsion Fm générée par le moteur thermique et de l’angle de la gouverne de profondeur β.

Problématique et démarche de l’étude
L’objectif de cette étude est le calcul des correcteurs des deux boucles de vitesse de façon à ce que le pilote automatique
assure les contraintes du cahier des charges décrites par le diagramme d’exigences donné figure 3.

Pour atteindre cet objectif, la procédure de synthèse des lois de commande suit les phases suivantes :
– conception d’un modèle dynamique non linéaire qui doit permettre

– la validation en simulation des performances du pilote automatique, au regard des exigences du cahier des
charges,

– la définition des modèles linéaires (par linéarisation au 1er ordre) pour le calcul des correcteurs des deux
boucles d’asservissement ;

– calcul des paramètres des correcteurs du pilote automatique ;
– analyse de la robustesse (capacité à conserver les performances souhaitées) du pilote automatique au regard de

la variation de la masse volumique de l’air en fonction de l’altitude.
Cette dernière phase fera également l’objet d’une synthèse globale et l’ensemble sera complété par une étude intermé-
diaire en vue de définir le modèle de la chaine cinématique de la gouverne de profondeur.

Partie A – Comportement dynamique de l’avion
Objectif

Déterminer un modèle dynamique décrivant l’évolution de l’altitude de l’avion en prenant l’angle de la gouverne de
profondeur et la force exercée par le moteur thermique et son hélice comme entrées de commande, la force exercée par
le vent comme entrée de perturbation.
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« requirement »
Asservir l’avion en vitesse

Id = "1" Text = "Le pilote automatique doit
asservir l’avion en vitesse."

« requirement »
S’intégrer à l’avion

Id = "1.1"
Text = "Le pilote automatique
doit s’intégrer à l’avion, modèle
ELIXIR."

« requirement »
Orienter la

gouverne de
profondeur

Id = "1.1.1"
Text = "Le pilote au-
tomatique doit faire
pivoter la gouverne de
profondeur d’un angle
β de ±17◦."

Caractéristiques de l’avion
Text = "L’avion ELIXIR dispose des caractéristiques suivantes :

– la motorisation délivre une puissance moteur maximale continue de 72 kW à un régime moteur de
5500 tr · min−1 ;

– la gamme de vitesse de l’avion s’étend de 164 km · h−1 à 290 km · h−1 ;
– le plafond opérationnel de l’avion est FL160, soit une altitude de 16 000 pieds ou 4877 m."

« requirement »
Asservir l’avion en

vitesse verticale
Id = "1.2"
Text = "L’avion doit être as-
servi en vitesse verticale."

Rapidité
Text = "Le temps
de réponse à 5 %
doit être inférieur à
5 secondes."

Précision
Text = "L’écart doit être nul en
régime permanent pour un éche-
lon de vitesse verticale."

Stabilité
Text = "La marge de
gain doit être au mini-
mum de 8 dB et la marge
de phase au minimum de
45◦."

« requirement »
Asservir l’avion en
vitesse horizontale

Id = "1.3"
Text = "L’avion doit être asservi
en vitesse horizontale."

Précision
Text = "L’écart doit être nul en
régime permanent pour un échelon
de vitesse horizontale."

Rapidité
Text = "Le temps
de réponse à 5 %
doit être inférieur à
3 secondes."

« refine » « refine » « refine »« refine » « refine » « refine »

Figure 3 – Diagramme d’exigences pour l’asservissement de vitesse

Repères et paramétrage associés à l’avion
On définit (voir figure 4) les points G et B, respectivement centre de gravité de l’avion et centre de poussée de la
gouverne de profondeur, et les repères suivants.

– R0 = (O, x⃗0, y⃗0, z⃗0) : repère galiléen terrestre, O un point fixe et z⃗0 la verticale descendante du lieu ;
– RA = (G, x⃗A, y⃗A, z⃗A) : repère aérodynamique tel que la vitesse de l’avion par rapport au repère terrestre soit

V⃗ G,avion/R0 = V (t)x⃗A = Vx(t)x⃗0 − Vz(t)z⃗0 ;
– RB = (G, x⃗B , y⃗B , z⃗B) : repère lié à l’avion ;
– RP = (B, x⃗P , y⃗P , z⃗P ) : repère lié à la gouverne de profondeur.

Attention, au sens du vecteur z⃗0 utilisé en aéronautique.
Dans le cas d’un vol symétrique, c’est-à-dire dans le cas où les plans (G, x⃗0, z⃗0) et (G, x⃗B , z⃗B) sont confondus, les
paramètres de position de l’avion sont

– θ : l’assiette ou angle entre l’horizontale x⃗0 et l’axe x⃗B de l’avion ;
– α : l’angle d’incidence ou angle (x⃗A, x⃗B) ;
– γ : la pente ou angle entre x⃗0 et le vecteur vitesse V⃗ G,avion/R0 ;
– x, y, z les coordonnées du centre de gravité de l’avion par rapport à O l’origine du repère terrestre, tel que−−→

OG = x(t)x⃗0 + y(t)y⃗0 − z(t)z⃗0.
Par ailleurs β = (x⃗B , x⃗P ) représente l’angle d’inclinaison de la gouverne de profondeur (monobloc, en liaison pivot
avec le fuselage) par rapport à l’avion.
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Figure 4 – Repère et paramétrage associé à l’avion

Les actions mécaniques qui s’appliquent sur l’avion sont
– le poids de l’avion s’exerçant au centre de gravité G : P⃗ = m gz⃗0 (g = 9,81m · s−2) ;
– la force de propulsion de l’hélice s’exerçant au point M : F⃗M = FM x⃗B ;
– les forces aérodynamiques dues à la vitesse de l’avion qui s’exercent au foyer aérodynamique A des surfaces

portantes (ailes et une partie du fuselage) qui se décomposent en deux composantes, une force de portance F⃗P

et une force de trainée F⃗T dans le repère RA :

F⃗P = −1
2ρ(Cz0 + Czα)SV 2z⃗A , F⃗T = −1

2ρ(Cx0 + Cxα)SV 2x⃗A

avec ρ la masse volumique de l’air, S une surface, Cz0 , Cz, Cx0 et Cx des coefficients aérodynamiques caracté-
ristiques de l’avion ;

– la force de portance générée par la gouverne de profondeur au centre de poussée B (la force de trainée associée
est négligée) où Cp0 et Cp sont des coefficients aérodynamiques caractéristiques de l’avion :

F⃗B = −1
2ρ[Cp0 + Cp(α + β)]SV 2z⃗A

– une force perturbatrice qui s’exerce en A et aura pour conséquence une variation d’altitude (par exemple une
rafale de vent, l’effet du sol lors d’un atterrissage...) : F⃗V = FV z⃗A.

Enfin, les dimensions de l’avion permettent de définir les vecteurs suivants :
−→
GA = −xAx⃗B ,

−−→
GB = −xBx⃗B − hB z⃗B ,

−−→
GM = xM x⃗B

I – Vol de croisière : analyse du régime stationnaire
Objectif

Calculer le point de fonctionnement en régime permanent et vérifier s’il est atteignable au regard des capacités de
l’avion.

La conception des lois de commande nécessite de définir un point de fonctionnement et les valeurs des différentes
grandeurs associées autour de ce point (vol de croisière pour une vitesse de référence V0 et une altitude choisies à
priori).

En l’absence de vent, et dans le cas d’un vol stationnaire, l’avion vole à altitude et à vitesses constantes. Dans cette
configuration, FV = 0 N, V = Vx = V0, Vz = 0 m · s−1, β = 0◦ et γ = 0◦.

Q1. En appliquant le Principe Fondamental de la Statique à l’avion, projeté dans le repère aérodynamique RA,
déterminer la force de propulsion FM en fonction de la vitesse V , de l’angle α, de la masse volumique de l’air ρ
et des constantes caractéristiques de l’avion. Montrer également que la vitesse V vérifie une égalité en fonction
uniquement de α, ρ et des constantes caractéristiques de l’avion.
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Q2. Afin que l’avion soit en vol stationnaire, montrer que l’angle α doit vérifier une égalité particulière indépendante
de la vitesse V de la forme :

1 + l1 tan α + (l2 + l3 tan α)α = 0

Donner les expressions des termes l1, l2 et l3.

La masse volumique de l’air est un paramètre variant selon l’altitude. Pour la synthèse des lois de commande il
est choisi d’utiliser la valeur ρ = 0,8 kg · m−3 correspondant à une altitude de croisière de 4000 m, pour laquelle les
coefficients aérodynamiques prennent les valeurs suivantes :

Cx0 = 0,066 Cx = 0,26 rad−1 Cz0 = 0,4 Cz = 11,6 rad−1 Cp0 = −0,045 Cp = 1,08 rad−1 S = 8 m2

Pour une masse de l’avion m = 630 kg, la résolution de l’équation obtenue question Q2. donne α = 0,84◦.

Q3. À partir des relations obtenues à la question Q1., calculer la vitesse de croisière V0 de l’avion et la force de
propulsion FM0. En argumentant la réponse, et compte tenu des capacités de l’avion précisées dans le diagramme
d’exigences donné figure 3, déterminer si ce point de fonctionnement (V0, FM0) est atteignable.

On notera dans la suite, α0 l’angle particulier donné précédemment, V0 la vitesse de croisière et FM0 la force de
propulsion associée.

II – Modèles dynamiques, non linéaire et linéaire, de l’avion
Objectif

Définir les modèles dynamiques de l’avion nécessaires à la synthèse et à la validation de la structure de commande du
pilote automatique.

La démarche de synthèse et de validation des lois de commande repose sur un ensemble de modèles dynamiques
de l’avion. Leur définition s’appuie sur les lois dynamiques régissant le comportement de l’avion autour du point
de fonctionnement précédemment déterminé. Les équations dynamiques étant non linéaires, une linéarisation de ces
équations sera proposée en se limitant à des développements à l’ordre 1.

Hypothèses : dans la suite, il est supposé que les variations des différentes grandeurs (vitesses, angles, etc.) sont
faibles autour de leur position d’équilibre déterminée dans la partie I.

Vx = V0 + ∆Vx ; Vz = ∆Vz ; γ = 0 + ∆γ ; α = α0 + ∆α ; β = 0 + ∆β ; FM = FM0 + ∆FM

Les notations suivantes sont rappelées :

– vecteur position du centre de gravité de l’avion −−→
OG = x(t)x⃗0 + y(t)y⃗0 − z(t)z⃗0 ;

– vecteur vitesse de l’avion par rapport au repère terrestre V⃗G,avion/R0 = V (t)x⃗A = Vx(t)x⃗0 − Vz(t)z⃗0.

Q4. Déterminer le vecteur accélération Γ⃗G,avion/R0 =
[

dV⃗G,avion/R0

dt

]
R0

de l’avion par rapport au référentiel galiléen

exprimé dans le repère de l’avion RA. Avec les hypothèses posées et en négligeant les termes d’ordre 2, en déduire
une expression simple de ce vecteur accélération en fonction des dérivées temporelles de ∆Vx et ∆Vz.

Q5. Écrire les relations issues du théorème de la résultante dynamique (TRD) appliqué à l’avion, en projection dans
le repère RA.

Pour la suite, il est admis :
– la propriété V 2 = V 2

x + V 2
z ;

– l’équation issue de la question Q1. FM0 cos α0 − 1
2ρ(Cx0 + Cxα0)SV 2

0 = 0.

Q6. Avec les hypothèses et en négligeant les termes d’ordre 2, montrer que l’équation du TRD selon x⃗A vérifie une
équation différentielle à coefficients constants de la forme :

d∆Vx

dt
+ a∆Vx = −g∆γ + b∆FM − c∆α (1)

Donner les expressions de a, b, c en fonction de constantes caractéristiques de l’avion, de ρ, V0, α0 et FM0
uniquement.
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Par une démarche identique, on peut montrer que l’équation du TRD selon z⃗A vérifie une équation différentielle à
coefficients constants de la forme :

1
V0

d∆Vz

dt
= d∆γ

dt
= d∆α + e∆β + f∆Vx + h∆FM − 1

mV0
Fv (2)

Q7. Avec les hypothèses posées et en négligeant les termes d’ordre 2, justifier la relation ∆Vz = V0∆γ.

Le comportement dynamique de l’avion est également régi par une équation complémentaire issue du théorème du
moment dynamique appliqué à l’avion.
La matrice d’inertie au centre de gravité G de l’avion dans son repère RB s’écrit :

I
G,avion

=

 I1 0 −I4
0 I2 0

−I4 0 I3


RB

Q8. Déterminer le moment dynamique en A de l’avion dans le repère R0. En négligeant les termes d’ordre 2, simplifier
cette expression.

Q9. En appliquant le théorème du moment dynamique à l’avion en A projeté sur l’axe y⃗0, déterminer l’équation du
mouvement sans chercher à linéariser cette dernière.

Avec les hypothèses du sujet, la relation obtenue à la question précédente peut être linéarisée, conduisant ainsi à une
équation différentielle à coefficients constants :

I2
d2∆γ

dt2 + k
d∆γ

dt
− r∆γ = −I2

d2∆α

dt2 − l∆α − n∆β + o
d∆Vx

dt
− q∆Vx (3)

III – Validation du modèle dynamique de l’avion
Les équations obtenues dans la partie II permettent d’établir deux modèles :

– un modèle dit Non Linéaire, découlant des relations du principe fondamental de la dynamique (PFD) avant
simplifications avec les hypothèses du sujet ;

– un modèle dit Linéarisé, découlant des équations 1, 2 et 3.
Ces deux modèles sont exploités pour mettre en place un outil de simulation permettant d’obtenir les courbes données
dans la figure 15 de l’annexe B. Sur cette figure, les évolutions des grandeurs de sortie (vitesses Vx et Vz) sont calculées
pour une évolution trapézoïdale de l’angle de la gouverne de profondeur β (colonne de gauche) ainsi que pour une
évolution en échelon de la force de propulsion ∆FM (colonne de droite).

Q10. Au vu de ces courbes, commenter les écarts entre les modèles Non Linéaire et Linéarisé. Distinguer les régimes
transitoires (fréquences propres, amortissements...) et permanents. Conclure sur le modèle à choisir pour la suite
de l’étude.

Partie B – Étude de la chaine cinématique de la gouverne de pro-
fondeur

La partie précédente a permis d’établir que le changement d’altitude était piloté à partir de l’angle de la gouverne
de profondeur β. Le pilotage de cet angle est réalisé par l’intermédiaire d’un servomoteur et d’un mécanisme dont le
schéma cinématique et le paramétrage associé sont donnés en annexe C. À chacun des solides i est associé un repère
Ri, la carlingue de l’avion étant le repère de référence RB . Le rotor du servomoteur est lié au solide 3, tandis que la
gouverne de profondeur est numérotée 8.

Objectif

Déterminer une loi linéaire liant l’angle du servomoteur θ3 à l’angle de la gouverne de profondeur β.

Q11. À partir du schéma et du paramétrage donné en annexe C, proposer une démarche permettant de déterminer
une relation entre θ3 et l’angle de la gouverne de profondeur β. Aucun calcul n’est attendu à cette question.
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Q12. En particulier, déterminer mathématiquement une relation liant les angles β et θ6 en fonction des paramètres
géométriques du mécanisme. La présenter sous la forme L2

7 = ( · · · )2 + ( · · · )2.

Les expressions candidates n’étant pas linéaires, dans la suite il est proposé d’approcher la fonction θ3 = f(θ1)
numériquement par dichotomie. Il est défini pour cela les fonctions Python :

from math import *

def loi31(theta3, theta1):
# Évalue la loi entrée sortie liant les angles theta3 et theta1 pour des valeurs particulières,
# tel que loi31(theta3,theta1) = 0 si la loi est vérifiée.
#
return L2**2-(XD+L3*cos(theta3)-L1*cos(theta1))**2-(-YA+L3*sin(theta3)-L1*sin(theta1))**2

def dichotomie(f, y, xmin, xmax, epsilon):
# Détermine la valeur de x qui vérifie f(x,y)=0 par dichotomie sur le domaine [xmin, xmax]
# avec une précision de epsilon sur la valeur de x.

x = 0.0
# Code à proposer
return x

Par exemple, l’utilisation de la fonction dichotomie(loi31,-1.3,0,np.pi,1e-3) renvoie la valeur 0.829117.

Q13. Proposer, directement sur la copie, une procédure écrite en Python pour la fonction dichotomie dont la signature
a été définie précédemment et permettant de déterminer la valeur numérique de θ3 pour une valeur particulière
de θ1.

La courbe en figure 5, déterminée par dichotomie conformément à la démarche retenue à la Q11., donne l’angle de la
gouverne de profondeur β en fonction de l’angle du servomoteur θ3 .
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Figure 5 – Évolution de l’angle β en fonction de l’angle du servomoteur θ3 (gauche) et détails (droite)

Q14. Au regard de la courbe en figure 5 et compte tenu du domaine de fonctionnement de l’avion, donner l’expression
d’une loi linéaire approchée permettant de relier β à l’angle θ3. Proposer un indicateur permettant de quantifier
l’erreur de modèle commise.

Partie C – Réglage du pilote automatique
Les parties précédentes ont permis de déterminer un modèle dynamique de l’avion et un modèle cinématique liant
l’angle de la gouverne de profondeur β à la position angulaire du rotor du servomoteur θ3 du pilote automatique.
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L’avion est équipé d’un ensemble de capteurs et d’une unité de traitement GARMIN GDU460 permettant de déter-
miner les commandes à envoyer aux servomoteurs.

Objectif

Régler les paramètres de la loi de commande et vérifier les performances de l’asservissement au regard des exigences
du cahier des charges.

Il s’agira dans la suite de concevoir les correcteurs et de régler les différents paramètres des chaines d’asservissement
des vitesses verticale et horizontale associées à la structure de commande du pilote automatique.

I – Définition des modèles pour la conception du pilote automatique
La phase de modélisation dynamique conduite dans la Partie A a permis d’aboutir à un système de trois équations
différentielles linéaires couplées (1, 2 et 3).
Après avoir appliqué les transformées de Laplace à ces équations, elles deviennent :

(p + a)∆Vx(p) = −g∆Γ(p) + b∆FM (p) − c∆α(p)
p∆Γ(p) = d∆α(p) + e∆β(p) + f∆Vx(p) + h∆FM (p) − 1

mV0
Fv(p)

(I2p2 + kp − r)∆Γ(p) = −(I2p2 + l)∆α(p) − n∆β(p) + (op − q)∆Vx(p)

où ∆Vx(p), ∆Γ(p), ∆FM (p), ∆α(p), ∆β(p) et Fv(p) sont les transformées de Laplace respectives des grandeurs tem-
porelles ∆Vx(t), ∆γ(t), ∆FM (t), ∆α(t), ∆β(t) et Fv(t).
En considérant que l’effort de perturbation Fv(p) est nul, et en rappelant la relation ∆Vz(t) = V0∆γ(t), le modèle
dynamique linéarisé peut être représenté par quatre fonctions de transfert :

H1(p) =
[

∆Vx(p)
∆FM (p)

]
∆β(p)=0

, H2(p) =
[

∆Vz(p)
∆FM (p)

]
∆β(p)=0

, H3(p) =
[

∆Vx(p)
∆β(p)

]
∆FM (p)=0

, H4(p) =
[

∆Vz(p)
∆β(p)

]
∆FM (p)=0

.

La structure de la régulation des vitesses horizontale et verticale de l’avion associée au modèle dynamique linéarisé
peut ainsi être modélisé par le schéma-bloc donné sur la figure 6.

– ∆V ∗
x (p) et ∆V ∗

z (p) sont respectivement les variations de consigne des vitesses horizontale et verticale ;
– CHx(p) et CHz(p) sont les fonctions de transfert respectives des correcteurs pour les boucles d’asservissement

en vitesse horizontale et verticale ;
– ∆F ∗

M (p) est la variation de consigne de la force de propulsion et ∆FM (p) est la variation réelle de la force de
propulsion ;

– Hm(p) est la fonction de transfert de l’ensemble de la chaine de propulsion ;
– ∆β∗(p) est la variation de consigne de l’angle de gouverne de profondeur et ∆β(p) est la variation de l’angle de

la gouverne de profondeur ;
– Kt est le gain de la chaine cinématique de la gouverne de profondeur et Ht(p) est la fonction de transfert de la

motorisation associée.

Le schéma-bloc met en évidence le couplage entre les différentes variables et montre ainsi que ∆Vx(p) et ∆Vz(p) sont
simultanément influencées par ∆V ∗

x (p) et ∆V ∗
z (p). Les hypothèses suivantes sont adoptées pour la suite :

– la fonction de transfert de la motorisation de la gouverne de profondeur, au vu de la technologie et de la rapidité
de l’actionneur retenu, peut être considérée comme unitaire Ht(p) = 1 ;

– quels que soient les résultats obtenus dans la partie précédente, le gain de la chaine cinématique de la gouverne
de profondeur est unitaire Kt = 1.

Le cahier des charges associé à cet asservissement est donné dans le diagramme d’exigences, figure 3.

II – Asservissement en vitesse verticale Vz

Objectif

Régler le correcteur de vitesse verticale Vz compte tenu de la dépendance entre les forces aérodynamiques et la vitesse
de l’avion.
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−
+ +

+

−
+ +

+

∆V ∗
x (p)

CHx(p)
εx(p)

Hm(p)
∆F ∗

m(p)
H1(p)

∆FM (p) ∆Vx(p)

H2(p) ∆Vpert(p)

∆V ∗
z (p)

CHz(p)
εz(p)

Kt · Ht(p)
∆β∗(p)

H4(p)
∆Vz(p)

H3(p)∆β(p)

Pilote automatique

Figure 6 – Schéma-bloc couplé de l’asservissement des vitesses horizontale et verticale

−
+ ++∆V ∗

z (p)
CHz(p)

εz(p)
1

∆β∗(p)
H4(p)

∆β(p) ∆Vz(p)

∆Vpert(p)

Figure 7 – Boucle de vitesse verticale linéarisée et découplée

Dans un premier temps, seul l’asservissement en vitesse verticale est pris en compte, en exploitant le modèle linéarisé
et en supposant que la variation de vitesse verticale est découplée. L’effet du couplage est ainsi assimilé dans ce cas à
un signal perturbateur extérieur ∆Vpert(p). La boucle d’asservissement est alors représentée par le schéma-bloc de la
figure 7.

La structure du correcteur est de type proportionnel intégral de fonction de transfert CHz(p) = Kz

(
1 + 1

τzp

)
, avec

Kz < 0.

Le diagramme de Bode de la fonction de transfert H4(p) est donné sur la figure 8. Le temps de réponse à 5 % attendu
pour la boucle d’asservissement de la vitesse verticale est d’environ 5 secondes. L’exploitation des relations approchées
usuelles liant la pulsation de coupure à 0 dB et le temps de réponse en boucle fermée permet de restreindre la plage
d’étude fréquentielle au voisinage de 1 rad · s−1. Le calcul des paramètres du correcteur sera alors effectué dans l’in-
tervalle [0,5 rad · s−1; 5 rad · s−1].

Pour la détermination de τz, une expression approchée H̃4(p) de H4(p) est envisagée ainsi que l’utilisation de l’ap-
proximation ωctr ≃ 3, où ωc est la pulsation de coupure à 0 dB de la fonction de transfert en boucle ouverte et tr le
temps de réponse à 5 % en boucle fermée.

Q15. Montrer, à partir du diagramme de Bode de la fonction H4(p) donné sur la figure 8, que la fonction H4(p) peut
être assimilée à une fonction de la forme H̃4(p) = −K4a

p
, avec K4a > 0, dans l’intervalle de pulsations retenu.

Donner la valeur de K4a.

Q16. Préciser sous forme littérale la fonction de transfert en boucle ouverte en adoptant la forme approchée H̃4(p).
Justifier la valeur négative retenue pour Kz.

Q17. Déterminer, à partir de l’expression de la fonction de transfert de la boucle ouverte, l’expression que doit vérifier
τz afin de répondre au critère de marge de phase du cahier des charges au regard du temps de réponse souhaité.
Faire l’application numérique.

Q18. En conservant la valeur de τz déterminée à la question Q17. déterminer l’expression de Kz permettant de vérifier
les critères de marge de phase et de rapidité du cahier des charges. Faire l’application numérique.
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Figure 8 – Diagramme de Bode de la fonction de transfert H4(p)

Le diagramme de Bode de la fonction de transfert en boucle ouverte corrigée établi à partir de la fonction H4(p) et
du correcteur CHz(p) déterminé aux questions précédentes est donné sur la figure 9.
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Figure 9 – Diagramme de Bode de la fonction de transfert en boucle ouverte corrigée

Q19. Déterminer, à partir de ce diagramme de Bode, les marges de gain et de phase. Conclure quant à la pertinence
de la loi de commande déterminée pour l’asservissement de la vitesse verticale Vz.
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III – Asservissement en vitesse horizontale Vx

III.1 – Fonction de transfert représentative pour la chaine d’asservissement de vitesse
horizontale Vx

Objectif

Exprimer une fonction de transfert simplifiée de la boucle ouverte de l’asservissement de vitesse horizontale, utilisable
dans le cadre de la synthèse du correcteur de cette même boucle.

Pour la synthèse du correcteur de la chaine d’asservissement horizontale il est envisagé d’utiliser un modèle simplifié
issu de la réduction du schéma-bloc couplé donné à la figure 6 de façon à considérer ∆V ∗

x (p) comme la consigne de
variation de vitesse horizontale et d’assimiler ∆V ∗

z (p) à une perturbation.

La boucle d’asservissement de la variation de vitesse verticale linéarisée et découplée est représentée sous forme de
schéma-bloc sur la figure 7.

Q20. Exprimer la fonction de transfert de la boucle fermée de l’asservissement de vitesse verticale découplée, notée
HBF vz

(p), en fonction de H4(p) et CHz(p).

Dans le cadre de l’étude de l’asservissement de ∆Vx, le schéma bloc de la figure 6 peut se ramener sous la forme du
schéma bloc intermédiaire de la figure 10.

−
+ +

+

−+

∆V ∗
x (p)

CHx(p)
εx(p)

Hm(p) H1(p)
∆Vx(p)

H2(p)

∆V ∗
z (p)

A(p) H3(p)

Figure 10 – Schéma-bloc intermédiaire

Q21. Déterminer l’expression de A(p) en fonction de H4(p) et HBF vz
(p) permettant le passage du schéma bloc de la

figure 6 au schéma bloc de la figure 10.

Q22. Montrer enfin, à partir de la forme précédente donnée figure 10, que le schéma-bloc couplé peut se mettre sous
la forme de la figure 11. Donner l’expression de B(p) en fonction de H4(p), H2(p), H3(p) et HBF vz (p).

−
+ +

+

A(p)H3(p)
∆V ∗

z (p)

∆V ∗
x (p)

CHx(p)Hm(p)
εx(p)

H1(p) − B(p)
∆Vx(p)

Figure 11 – Boucle de vitesse horizontale perturbée

Le schéma-bloc mis sous la forme de la figure 11 permet ainsi d’exprimer la fonction de transfert en boucle ouverte de
l’asservissement de vitesse horizontale HBOvx

(p) = ∆Vx(p)
εx(p) :

HBOvx
(p) = CHx(p)Hm(p) (H1(p) − B(p))

Le temps de réponse à 5% attendu pour la boucle d’asservissement de la vitesse horizontale est d’environ 3 secondes.
En conséquence, dans le cadre du réglage du correcteur, le modèle de la caractéristique fréquentielle du système au
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voisinage de 1 rad · s−1, plus précisément entre 0,8 rad · s−1 et 8 rad · s−1, sera plus particulièrement considéré.

La figure 16, annexe D, représente le diagramme de Bode de la fonction de transfert H1(p) − B(p).

Q23. Déterminer une expression numérique simplifiée de H1(p) − B(p), notée H̃1(p), sous la forme H̃1(p) = K1a

p
(K1a > 0), utilisable pour le réglage du correcteur de la boucle de variation de vitesse horizontale.

III.2 – Synthèse du correcteur de la boucle de vitesse horizontale Vx

Objectif

Déterminer les paramètres d’un correcteur permettant à la boucle d’asservissement de la vitesse horizontale d’atteindre
les objectifs fixés par le cahier des charges fonctionnel.

L’architecture de correcteur retenue pour la boucle de vitesse horizontale est de type proportionnel intégral de fonction

de transfert CHx(p) = Kx

(
1 + 1

τxp

)
.

En phase de vol, le modèle de comportement du groupe de propulsion est approché par celui d’une fonction du premier
ordre de gain statique unitaire et de constante de temps 0,01 s :

Hm(p) = 1
1 + 0, 01p

Q24. Justifier que, dans l’intervalle de pulsations retenu pour le réglage du correcteur, la fonction de transfert en
boucle ouverte de l’asservissement de vitesse horizontale HBOvx

(p) peut se mettre sous la forme HBOvx
(p) =

CHx(p)H̃1(p).

Q25. À partir du schéma-bloc simplifié donné en figure 11, en considérant que H1(p) − B(p) = H̃1(p) = K1a

p
,

déterminer l’expression littérale sous forme canonique de la fonction de transfert en boucle fermée de la régulation
de vitesse horizontale HBF vx(p) = ∆Vx(p)

∆V ∗
x (p) , en fonction de K1a, Kx et τx. Conclure quant à la stabilité de la

boucle fermée de vitesse horizontale.

Q26. Écrire HBF vx
(p) sous une forme HBF vx

(p) = X(p) + Tp · X(p) et donner l’expression de T .

Q27. Exprimer les paramètres caractéristiques de X(p) : pulsation propre ω0 et coefficient d’amortissement ξ. Donner
l’expression de Kx en fonction de K1a et τx, afin que la réponse indicielle de X(p) soit la plus rapide possible,
sans dépassement.

La figure 12 donne l’abaque du temps de réponse réduit pour les systèmes du deuxième ordre.
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Figure 12 – Abaque du temps de réponse réduit pour les systèmes du deuxième ordre
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Q28. Donner la valeur de τx pour que le temps de réponse à 5 % de la réponse indicielle de X(p) soit de 3 s. En
déduire la valeur de Kx.

La figure 17 de l’annexe D représente le tracé de la réponse indicielle de la fonction

τxp

1 + τxp + τx

K1aKx
p2

= Tp · X(p)

Q29. Tracer sur la copie la réponse indicielle de X(p) en justifiant la construction de la courbe. À l’aide de la figure
17 de l’annexe D, la compléter avec le tracé de la réponse indicielle de HBF vx(p). Commenter l’influence du zéro
de HBF vx

(p) sur le comportement temporel.

Partie D – Synthèse

I – Robustesse des asservissements en vitesse
Objectif

Valider les performances globales après implémentation des réglages précédents dans le système de commande du
pilote automatique.

Pour valider la loi de commande étudiée précédemment il est utilisé un simulateur non linéaire exploitant les modèles
dynamiques, couplés, définis précédemment et les correcteurs synthétisés. Une simulation est réalisée sur un intervalle
de temps de 50 s au cours duquel les variations de vitesses horizontale et verticale de l’avion sont relevées autour d’un
point de fonctionnement défini par Vx(t = 0) = 60 m · s−1, Vz(t = 0) = 0. L’altitude initiale est z(t = 0) = 4000 m et :

– à t = 10 s est imposé un échelon de variation de vitesse horizontale d’amplitude 10 m · s−1 ;
– à t = 30 s est imposé un échelon de variation de vitesse verticale d’amplitude −3 m · s−1.

Les évolutions des vitesses horizontale et verticale de l’avion sont données figure 13.
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Figure 13 – Évolutions des vitesses horizontale et verticale obtenues en simulation numérique avec le modèle non
linéaire
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Q30. À partir des résultats figure 13, commenter les performances des asservissements des vitesses verticale et ho-
rizontale. Est-il possible de considérer le comportement de l’avion en fonctionnement « pilote automatique »
comme découplé ?

II – Sensibilité du système aux variations de la masse volumique de l’air
Objectif

Quantifier la sensibilité du système aux variations d’un paramètre extérieur : la masse volumique de l’air en fonction
de l’altitude. Vérifier la robustesse vis-à-vis de la variation de ce paramètre.

La masse volumique de l’air, de par son rôle dans les forces aérodynamiques, est un paramètre important pour la
modélisation du comportement dynamique de l’avion et pour le réglage du système de commande. Le calcul des para-
mètres des correcteurs a été effectué en considérant une masse volumique de l’air égale à 0,8 kg · m−3, valeur mesurée
à l’altitude de croisière. Étant donné la forte variation de cette valeur avec l’altitude, il est judicieux d’étudier la
sensibilité des performances de la loi de commande vis-à-vis de la masse volumique de l’air, de 1,22 kg · m−3 au niveau
du sol, à 0,4 kg · m−3 à une altitude de 10 000 m, supérieure à l’altitude maximale autorisée de l’avion.

Pour cela les modèles en boucle fermée sont déterminés pour différentes valeurs de masse volumique de l’air ρ ∈
[0, 4 ; · · · ; 1, 22] kg · m−3. De cette étude découle l’évolution des pôles du système {avion + pilote automatique},
visible sur le graphique de la figure 14 (cette courbe est appelée lieu des pôles), selon l’évolution de la valeur de masse
volumique de l’air.
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Figure 14 – Lieu des pôles du système {avion + pilote automatique} selon la valeur de masse volumique de l’air
(gauche) et détails (droite)

Sur la figure 14 le lieu des pôles est représenté par des croix. Le lieu contient les pôles calculés pour une masse
volumique de l’air allant de 1,22 kg · m−3 à 0,4 kg · m−3 avec un pas de 0,02 kg · m−3. Les droites obliques sont appelées
lignes iso-amortissement. Chaque paire de droites correspond au lieu des pôles d’un système du deuxième ordre avec
ξ ∈ {0, 5 ; 0, 7 ; 0, 8 ; 0, 9}.

Q31. En analysant la figure 14, commenter l’évolution du comportement de l’avion en fonction de l’altitude. Proposer
des solutions afin de garantir un meilleur comportement global quelle que soit l’altitude.
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Annexe A Architecture de l’avion et termes techniques associés
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Annexe B Comparaison des réponses des modèles Non Linéaire
et Linéarisé
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Figure 15 – Comparaison des modèles Non Linéaire (NL) et Linéarisé (L) en fonction des entrées β (gauche) et ∆Fm (droite)
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Annexe C Schéma cinématique du mécanisme d’orientation de
la gouverne de profondeur
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Annexe D Réponses fréquentielle et temporelle de la boucle d’as-
servissement de la vitesse horizontale Vx
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Figure 16 – Diagramme de Bode de H1(p) − B(p)
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Figure 17 – Réponse indicielle de Tp · X(p)
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